Column I shows four systems, each of the same length ' \( L \) ', for producing of a system called
\( \mathrm{P} \)
fundamental frequency, whose wave length is denoted as \( \lambda_{f} \). Match each system with statements given in Column II describing the nature and wavelength of the standing waves
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Column-I } & \multicolumn{2}{|c|}{ Column-II } \\
\hline (A) & Pipe closed at one end & (p) & \begin{tabular}{l}
Longitudinal \\
waves
\end{tabular} \\
\hline (B) & Pipe open at both ends & (q) & \begin{tabular}{l}
Transverse \\
waves
\end{tabular} \\
\hline (C) & \begin{tabular}{l}
Stretched wire clamped \\
at both ends
\end{tabular} & (r) & \( \lambda_{\mathrm{f}}=L \) \\
\hline (D) & \begin{tabular}{l}
Stretched wire clamped \\
at both ends at mid point
\end{tabular} & (s) & \( \lambda_{f}=2 L \) \\
\hline & & (t) & \( \lambda_{f}=4 L \) \\
\hline
\end{tabular}
(1) A-p, s; B-p, t; C-q, s; D-q, r
(2) A-p, t; B-p, s; C-q, s; D-q, r
(3) A-q, s; B-p, t; C-p, s; D-p, r
(4) A-q, t; B-p, s; C-q, r; D-s, t