Competition-Level Code Generation with AlphaCode (Paper Review)

Subscribers:
284,000
Published on ● Video Link: https://www.youtube.com/watch?v=s9UAOmyah1A



Category:
Let's Play
Duration: 45:26
10,207 views
390


#ai #alphacode #deepmind

AlphaCode is an automated system that can solve competitive programing exercises. The authors found an interesting combination of language models, large-scale sampling, and clever techniques to filter and subsequently cluster the resulting programs, which lets the system perform on the level of an average competitor in real competitions. In this video, we take a deep dive into AlphaCode's design, architecture, and experimental evaluation. The paper is very well structured and the empirical results are super interesting!

OUTLINE:
0:00 - Intro
2:10 - Paper Overview
3:30 - An example problem from competitive programming
8:00 - AlphaCode system overview
14:00 - Filtering out wrong solutions
17:15 - Clustering equivalent generated programs
21:50 - Model configurations & engineering choices
24:30 - Adding privileged information to the input & more tricks
28:15 - Experimental Results (very interesting!)

Paper: https://storage.googleapis.com/deepmind-media/AlphaCode/competition_level_code_generation_with_alphacode.pdf
Code: https://github.com/deepmind/code_contests

Abstract: Programming is a powerful and ubiquitous problem-solving tool. Developing systems that can assist programmers or even generate programs independently could make programming more productive and accessible, yet so far incorporating innovations in AI has proven challenging. Recent large-scale language models have demonstrated an impressive ability to generate code, and are now able to complete simple programming tasks. However, these models still perform poorly when evaluated on more complex, unseen problems that require problem-solving skills beyond simply translating instructions into code. For example, competitive programming problems which require an understanding of algorithms and complex natural language remain extremely challenging. To address this gap, we introduce AlphaCode, a system for code generation that can create novel solutions to these problems that require deeper reasoning. Evaluated on recent programming competitions on the Codeforces platform, AlphaCode achieved on average a ranking of top 54.3% in programming competitions with more than 5,000 participants. We found that three key components were critical to achieve good and reliable performance: (1) an extensive and clean competitive programming dataset for training and evaluation, (2) large and efficient-to-sample transformer-based architectures, and (3) large-scale model sampling to explore the search space, followed by filtering based on program behavior to a small set of submissions.

Authors: Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu and Oriol Vinyals

Links:
Merch: http://store.ykilcher.com
TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yannic-kilcher
LinkedIn: https://www.linkedin.com/in/ykilcher
BiliBili: https://space.bilibili.com/2017636191

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannickilcher
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n




Other Videos By Yannic Kilcher


2022-03-21[ML News] AI Threatens Biological Arms Race
2022-03-20Active Dendrites avoid catastrophic forgetting - Interview with the Authors
2022-03-18Avoiding Catastrophe: Active Dendrites Enable Multi-Task Learning in Dynamic Environments (Review)
2022-03-14Author Interview - VOS: Learning What You Don't Know by Virtual Outlier Synthesis
2022-03-13VOS: Learning What You Don't Know by Virtual Outlier Synthesis (Paper Explained)
2022-03-08Spurious normativity enhances learning of compliance and enforcement behavior in artificial agents
2022-03-06First Author Interview: AI & formal math (Formal Mathematics Statement Curriculum Learning)
2022-03-05OpenAI tackles Math - Formal Mathematics Statement Curriculum Learning (Paper Explained)
2022-03-04[ML News] DeepMind controls fusion | Yann LeCun's JEPA architecture | US: AI can't copyright its art
2022-03-02AlphaCode - with the authors!
2022-03-01Competition-Level Code Generation with AlphaCode (Paper Review)
2022-02-28Can Wikipedia Help Offline Reinforcement Learning? (Author Interview)
2022-02-26Can Wikipedia Help Offline Reinforcement Learning? (Paper Explained)
2022-02-23[ML Olds] Meta Research Supercluster | OpenAI GPT-Instruct | Google LaMDA | Drones fight Pigeons
2022-02-21Listening to You! - Channel Update (Author Interviews)
2022-02-20All about AI Accelerators: GPU, TPU, Dataflow, Near-Memory, Optical, Neuromorphic & more (w/ Author)
2022-02-18[ML News] Uber: Deep Learning for ETA | MuZero Video Compression | Block-NeRF | EfficientNet-X
2022-02-17CM3: A Causal Masked Multimodal Model of the Internet (Paper Explained w/ Author Interview)
2022-02-16AI against Censorship: Genetic Algorithms, The Geneva Project, ML in Security, and more!
2022-02-15HyperTransformer: Model Generation for Supervised and Semi-Supervised Few-Shot Learning (w/ Author)
2022-02-10[ML News] DeepMind AlphaCode | OpenAI math prover | Meta battles harmful content with AI



Tags:
deep learning
machine learning
arxiv
explained
neural networks
ai
artificial intelligence
paper
alphacode
alpha code
deepmind
deepmind code
deepmind alphacode
alphacoder
codex
copilot
ai code
ai programmer
ai competitive programming
ai leetcode
machine learning leetcode
deepmind leetcode
codeforces
large scale sampling
language models
language models for code
ai python programmer
deep mind
fuzzing
google deepmind
competitive programming ai