Avoiding Catastrophe: Active Dendrites Enable Multi-Task Learning in Dynamic Environments (Review)

Subscribers:
284,000
Published on ● Video Link: https://www.youtube.com/watch?v=O_dJ31T01i8



Changes
Game:
Changes (2021)
Duration: 1:05:20
18,580 views
0


#multitasklearning #biology #neuralnetworks

Catastrophic forgetting is a big problem in mutli-task and continual learning. Gradients of different objectives tend to conflict, and new tasks tend to override past knowledge. In biological neural networks, each neuron carries a complex network of dendrites that mitigate such forgetting by recognizing the context of an input signal. This paper introduces Active Dendrites, which carries over the principle of context-sensitive gating by dendrites into the deep learning world. Various experiments show the benefit in combatting catastrophic forgetting, while preserving sparsity and limited parameter counts.

OUTLINE:
0:00 - Introduction
1:20 - Paper Overview
3:15 - Catastrophic forgetting in continuous and multi-task learning
9:30 - Dendrites in biological neurons
16:55 - Sparse representations in biology
18:35 - Active dendrites in deep learning
34:15 - Experiments on multi-task learning
39:00 - Experiments in continual learning and adaptive prototyping
49:20 - Analyzing the inner workings of the algorithm
53:30 - Is this the same as just training a larger network?
59:15 - How does this relate to attention mechanisms?
1:02:55 - Final thoughts and comments

Paper: https://arxiv.org/abs/2201.00042
Blog: https://numenta.com/blog/2021/11/08/can-active-dendrites-mitigate-catastrophic-forgetting

ERRATA:
- I was made aware of this by https://twitter.com/ChainlessCoder: "That axon you showed of the pyramidal neuron, is actually the apical dendrite of the neuron". Sorry, my bad :)

Abstract:
A key challenge for AI is to build embodied systems that operate in dynamically changing environments. Such systems must adapt to changing task contexts and learn continuously. Although standard deep learning systems achieve state of the art results on static benchmarks, they often struggle in dynamic scenarios. In these settings, error signals from multiple contexts can interfere with one another, ultimately leading to a phenomenon known as catastrophic forgetting. In this article we investigate biologically inspired architectures as solutions to these problems. Specifically, we show that the biophysical properties of dendrites and local inhibitory systems enable networks to dynamically restrict and route information in a context-specific manner. Our key contributions are as follows. First, we propose a novel artificial neural network architecture that incorporates active dendrites and sparse representations into the standard deep learning framework. Next, we study the performance of this architecture on two separate benchmarks requiring task-based adaptation: Meta-World, a multi-task reinforcement learning environment where a robotic agent must learn to solve a variety of manipulation tasks simultaneously; and a continual learning benchmark in which the model's prediction task changes throughout training. Analysis on both benchmarks demonstrates the emergence of overlapping but distinct and sparse subnetworks, allowing the system to fluidly learn multiple tasks with minimal forgetting. Our neural implementation marks the first time a single architecture has achieved competitive results on both multi-task and continual learning settings. Our research sheds light on how biological properties of neurons can inform deep learning systems to address dynamic scenarios that are typically impossible for traditional ANNs to solve.

Authors: Abhiram Iyer, Karan Grewal, Akash Velu, Lucas Oliveira Souza, Jeremy Forest, Subutai Ahmad

Links:
TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yannic-kilcher
LinkedIn: https://www.linkedin.com/in/ykilcher
BiliBili: https://space.bilibili.com/2017636191

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannickilcher
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n




Other Videos By Yannic Kilcher


2022-04-01Improving Intrinsic Exploration with Language Abstractions (Machine Learning Paper Explained)
2022-03-30[ML News] GPT-3 learns to edit | Google Pathways | Make-A-Scene | CLIP meets GamePhysics | DouBlind
2022-03-29Author Interview - Memory-assisted prompt editing to improve GPT-3 after deployment
2022-03-28Memory-assisted prompt editing to improve GPT-3 after deployment (Machine Learning Paper Explained)
2022-03-26Author Interview - Typical Decoding for Natural Language Generation
2022-03-25Typical Decoding for Natural Language Generation (Get more human-like outputs from language models!)
2022-03-24One Model For All The Tasks - BLIP (Author Interview)
2022-03-23BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding&Generation
2022-03-21[ML News] AI Threatens Biological Arms Race
2022-03-20Active Dendrites avoid catastrophic forgetting - Interview with the Authors
2022-03-18Avoiding Catastrophe: Active Dendrites Enable Multi-Task Learning in Dynamic Environments (Review)
2022-03-14Author Interview - VOS: Learning What You Don't Know by Virtual Outlier Synthesis
2022-03-13VOS: Learning What You Don't Know by Virtual Outlier Synthesis (Paper Explained)
2022-03-08Spurious normativity enhances learning of compliance and enforcement behavior in artificial agents
2022-03-06First Author Interview: AI & formal math (Formal Mathematics Statement Curriculum Learning)
2022-03-05OpenAI tackles Math - Formal Mathematics Statement Curriculum Learning (Paper Explained)
2022-03-04[ML News] DeepMind controls fusion | Yann LeCun's JEPA architecture | US: AI can't copyright its art
2022-03-02AlphaCode - with the authors!
2022-03-01Competition-Level Code Generation with AlphaCode (Paper Review)
2022-02-28Can Wikipedia Help Offline Reinforcement Learning? (Author Interview)
2022-02-26Can Wikipedia Help Offline Reinforcement Learning? (Paper Explained)



Tags:
deep learning
machine learning
arxiv
explained
neural networks
ai
artificial intelligence
paper
active dendrites
neurons dendrites
biological deep learning
deep learning biology
numenta
numenta research
numenta deep learning
dendrites deep learning
deep learning tutorial
hierarchical temporal memory
computational neuroscience
reinforcement learning
robotics
multi task learning
continuous learning
continual learning
permuted mnist



Other Statistics

Changes Statistics For Yannic Kilcher

At this time, Yannic Kilcher has 18,580 views for Changes spread across 1 video. There's close to an hours worth of content for Changes published on his channel, less than 0.41% of the total video content that Yannic Kilcher has uploaded to YouTube.