Comprehension. \( \quad: \) The points \( A, B \) and \( C \) with position vectors \( \vec{a}, ... VIDEO
Comprehension. \( \quad: \) The points \( A, B \) and \( C \) with position vectors \( \vec{a}, \vec{b} \& \vec{c} \) and respectively lie on a circle centred at origin \( O \). Let \( G \) and \( E \) be the centroid of \( \triangle A B C \) and \( \triangle A C D \) respectively where \( D \) is midpoint of \( A B \).
If \( G E \) and \( C D \) are mutually perpendicular, then orthocenter of \( D A B C \) must lie on:
(a) Median through \( A \)
(b) Median through \( C \)
(c) Angle bisector thruogh \( A \)
(d) Angle bisector through \( B \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions 2023-06-09 Find the scalars \( \alpha \) and \( \beta \) if \( \vec{a} \times(\vec{b} \times \vec{c})+(\vec... 2023-06-09 Consider a plane II: \( \vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})=5 \), a line \( L_{1} \) : \( \... 2023-06-09 \( \vec{a}, \vec{b}, \vec{c} \) and \( \vec{d} \) are the position vectors of the points \( A \e... 2023-06-09 Let \( \vec{a}, \vec{b} \) and \( \vec{c} \) be non-coplanar unit vectors, equally inclined to o... 2023-06-09 Prove that:
\[
(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})+(\vec{a} \times \vec{c}) ... 2023-06-09 Given three points on the \( x y \) plane on \( O(0,0), A(1,0) \) and \( B(-1,0) \). Point \( P ... 2023-06-09 \( \begin{array}{ll}\text { Comprehension } & : \text { The points } A, B \text { and } C \text ... 2023-06-09 In a \( \triangle A B C \), points \( E \) and \( F \) divide sides \( A C \) and \( A B \) resp... 2023-06-09 Suppose the three vectors \( \vec{a}, b, \vec{c} \) on a plane satisfy the condition that \( |\v... 2023-06-09 \( \begin{array}{ll}\text { Comprehension } & : \text { The points } A, B \text { and } C \text ... 2023-06-09 Comprehension. \( \quad: \) The points \( A, B \) and \( C \) with position vectors \( \vec{a}, ... 2023-06-09 Two perpendicular unit vectors \( \vec{a} \) and \( \vec{b} \) are such that \( [\vec{r} \vec{a}... 2023-06-09 Consider the points \( A(\vec{a}) ; B(\vec{b}) ; C(\vec{c}) \) and \( D(\vec{d}) . x \) is the d... 2023-06-09 Let \( O A B C \) is a tetrahedron with equal edges and \( \overrightarrow{O A}=\vec{a}, \overri... 2023-06-09 If \( a, b, c \) are the \( \mathrm{p}^{\text {th }}, \mathrm{q}^{\text {th }}, \mathrm{r}^{\tex... 2023-06-09 If \( \hat{i} \times[(\vec{a}-\hat{j}) \times \hat{i}]+\hat{j} \times[(\vec{a}-\hat{k}) \times \... 2023-06-09 Let a be a real number and \( \vec{\alpha}=\hat{i}+2 \hat{j}, \vec{\beta}=2 \hat{i}+a \hat{j}+10... 2023-06-09 Let \( \vec{a}=\lambda \hat{i}+2 \hat{j}+\hat{k}, \hat{b}=\hat{i}+\lambda \hat{j}-\hat{k} \) and... 2023-06-09 \( (\vec{d}+\vec{a}) \cdot(\vec{a} \times(\vec{b} \times(\vec{c} \times \vec{d}))) \) simplifies... 2023-06-09 Consider a plane \( \pi: \vec{r} \cdot \vec{n}=d \) (where \( \vec{n} \) is not a unit vector). ... 2023-06-09 Let \( \vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_...