Let \( O A B C \) is a tetrahedron with equal edges and \( \overrightarrow{O A}=\vec{a}, \overri... VIDEO
Let \( O A B C \) is a tetrahedron with equal edges and \( \overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b} \) and \( \overrightarrow{O C}=\vec{c} \) where \( |\vec{a}|=|\vec{b}|=|\vec{c}|=2 \). If \( \hat{p}, \hat{q} \) and \( \hat{r} \) are unit vectors along bisectors of angle between pair of edges represented by \( \overrightarrow{O A}, \overrightarrow{O B} ; \overrightarrow{O B}, \overrightarrow{O C} \) and \( \overrightarrow{O C}, \overrightarrow{O A} \) respectively, then the value of \( \frac{[\vec{a} \vec{b} \vec{c}]}{[\hat{p}+\hat{q} \hat{q}+\hat{r} \hat{r}+\hat{p}]} \) is equal to
(a) \( \frac{3 \sqrt{3}}{32} \)
(b) \( 4 \sqrt{2} \)
(c) \( 6 \sqrt{3} \)
(d) \( \frac{3 \sqrt{3}}{8} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions 2023-06-09 Let \( \vec{a}, \vec{b} \) and \( \vec{c} \) be non-coplanar unit vectors, equally inclined to o... 2023-06-09 Prove that:
\[
(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})+(\vec{a} \times \vec{c}) ... 2023-06-09 Given three points on the \( x y \) plane on \( O(0,0), A(1,0) \) and \( B(-1,0) \). Point \( P ... 2023-06-09 \( \begin{array}{ll}\text { Comprehension } & : \text { The points } A, B \text { and } C \text ... 2023-06-09 In a \( \triangle A B C \), points \( E \) and \( F \) divide sides \( A C \) and \( A B \) resp... 2023-06-09 Suppose the three vectors \( \vec{a}, b, \vec{c} \) on a plane satisfy the condition that \( |\v... 2023-06-09 \( \begin{array}{ll}\text { Comprehension } & : \text { The points } A, B \text { and } C \text ... 2023-06-09 Comprehension. \( \quad: \) The points \( A, B \) and \( C \) with position vectors \( \vec{a}, ... 2023-06-09 Two perpendicular unit vectors \( \vec{a} \) and \( \vec{b} \) are such that \( [\vec{r} \vec{a}... 2023-06-09 Consider the points \( A(\vec{a}) ; B(\vec{b}) ; C(\vec{c}) \) and \( D(\vec{d}) . x \) is the d... 2023-06-09 Let \( O A B C \) is a tetrahedron with equal edges and \( \overrightarrow{O A}=\vec{a}, \overri... 2023-06-09 If \( a, b, c \) are the \( \mathrm{p}^{\text {th }}, \mathrm{q}^{\text {th }}, \mathrm{r}^{\tex... 2023-06-09 If \( \hat{i} \times[(\vec{a}-\hat{j}) \times \hat{i}]+\hat{j} \times[(\vec{a}-\hat{k}) \times \... 2023-06-09 Let a be a real number and \( \vec{\alpha}=\hat{i}+2 \hat{j}, \vec{\beta}=2 \hat{i}+a \hat{j}+10... 2023-06-09 Let \( \vec{a}=\lambda \hat{i}+2 \hat{j}+\hat{k}, \hat{b}=\hat{i}+\lambda \hat{j}-\hat{k} \) and... 2023-06-09 \( (\vec{d}+\vec{a}) \cdot(\vec{a} \times(\vec{b} \times(\vec{c} \times \vec{d}))) \) simplifies... 2023-06-09 Consider a plane \( \pi: \vec{r} \cdot \vec{n}=d \) (where \( \vec{n} \) is not a unit vector). ... 2023-06-09 Let \( \vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_... 2023-06-09 If \( \vec{a}, \vec{b} \) and \( \vec{c} \) are three mutually perpendicular unit vectors and \(... 2023-06-09 If \( \left|\begin{array}{lll}(x-a)^{2} & (x-b)^{2} & (x-c)^{2} \\ (y-a)^{2} & (y-b)^{2} & (y-c)... 2023-06-09 The angle \( \theta \) between two non-zero vectors \( a \) and \( b \) satisfies the relation
\...