Consider a \( \triangle A B C \) in which sides \( A B \) and \( A C \) are perpendicular to \( x-y-4=0 \) and \( 2 x-y-5=0 \), respectively. Vertex
\( \mathrm{P} \) \( A \) is \( (-2,3) \) and the circumcenter of \( \triangle A B C \) is \( (3 / 2,5 / 2) \). The equation of line in List \( \mathrm{I} \) is of the form \( a x+b y+c=0 \), where \( a, b, c \in I \). Match it with the corresponding value of \( c \) in List II and then choose the correct code.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ List I } & List II \\
\hline \( \begin{array}{l}\text { a. } \text { Equation of the perpendicular bisector of } \\
\text { side } A B\end{array} \) & p. -1 \\
\hline \( \begin{array}{l}\text { b. } \text { Equation of the perpendicular bisector of } \\
\text { side } A C .\end{array} \) & q. 1 \\
\hline c. Equation of side \( A C \) & r. -16 \\
\hline d. Equation of the median through \( A \) & s. -4 \\
\hline
\end{tabular}
Codes:
a b c \( \quad \) d
(1) \( \mathrm{r} \) s \( \mathrm{p} \quad \mathrm{q} \)
(2) \( s \) r \( r \) q \( p \)
(3) q p s \( r \)
(4) \( \mathrm{r} \quad \mathrm{p} \quad \mathrm{s} \quad \mathrm{q} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live