Consider determinant is \( \Delta=\mid \) aij \( \mid \) of order 3. If \( \Delta=2 \), then mat....
Consider determinant is \( \Delta=\mid \) aij \( \mid \) of order 3. If \( \Delta=2 \), then match the following lists:
\begin{tabular}{|l|l|l|l|}
\hline & \multicolumn{1}{|c|}{ List I } & & List II \\
\hline (A) & \begin{tabular}{l}
The value of determinant \( \Delta_{1} \) \\
\( =\left|(-1)^{i+j} a_{i j}\right| \) is
\end{tabular} & (P) & 2 \\
\hline (B) & \begin{tabular}{l}
The value of determinant \( \Delta_{2} \) \\
\( =\left|2^{i+j} a_{i j}\right| \) is
\end{tabular} & (Q) & \( 2^{2} \) \\
\hline (C) & \begin{tabular}{l}
The value of determinant \( \Delta_{3} \) \\
\( =\left|C_{i j}\right| \), where \( C_{i j} \) is the co- \\
factor of \( a_{i j} \) is
\end{tabular} & (R) & \( 2^{4} \) \\
\hline (D) & \begin{tabular}{l}
The value of determinant \( \Delta_{4} \) \\
\( =\left|D_{i j}\right| \), where \( D_{i j}= \) cofactor \\
of \( C_{i j} \) and \( C_{i j} \) is cofactor of \\
\( a_{i j} \)
\end{tabular} & (S) & \( 2^{13} \) \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{lllll}
\hline & A & B & C & D \\
(1) & Q & P & R & S \\
(2) & P & S & Q & R \\
(3) & Q & S & P & R \\
(4) & P & S & R & Q
\end{tabular}
P
W
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live