Consider matrices \( A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 4 & 1 & 2 \\ 1 & -1 & 1\end{array}\right] ; B=\left[\begin{array}{ccc}2 & 1 & 3 \\ 4 & 1 & -1 \\ 2 & 2 & 3\end{array}\right] ; C=\left[\begin{array}{c}14 \\ 12 \\ 2\end{array}\right] ; D=\left[\begin{array}{l}13 \\ 11 \\ 14\end{array}\right] ; X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \) such that
P solutions of equation \( A X=C \) and \( B X=D \) represents two points \( P\left(x_{1}, y_{1}, z_{1}\right) \) and \( Q\left(x_{2}, y_{2}, z_{2}\right) \)
W. respectively in three dimensional space. If \( P^{\prime} Q^{\prime} \) is the reflection of the line \( P Q \) in the plane \( \prod: x+y+z=9 \), then the point which does not lie on \( P^{\prime} Q^{\prime} \) is :
(a) \( (3,4,2) \)
(b) \( (5,3,4) \)
(c) \( (7,2,3) \)
(d) \( (1,5,6) \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live