Consider set
\( \mathrm{P} \)
\[
A=\left\{T(r+1)={ }^{n} C_{r}(3)^{n-r}(5 x)^{r}, r=0,1,2,3, \ldots, n\right\}
\]
\begin{tabular}{|l|l|l|l|}
\hline & \multicolumn{1}{|c|}{ List -I } & & List-II \\
\hline (A) & \begin{tabular}{l}
For \( x=1 \) if \( T(12) \) is the greatest \\
then the value of ' \( n \) ' can be
\end{tabular} & (P) & 10 \\
\hline (B) & \begin{tabular}{l}
For \( n=25 \), if \( T(21) \) is the greatest \\
then the value of \( 5 x \) can be
\end{tabular} & (Q) & 18 \\
\hline (C) & \begin{tabular}{l}
For \( n=20 \), if \( T(10)=T(11) \) then \\
the value of 33x can be
\end{tabular} & (R) & 17 \\
\hline (D) & \begin{tabular}{l}
For \( x=2 \), if \( T(8) \) is the second \\
largest then the value of ' \( n \) ' is
\end{tabular} & (S) & 12 \\
\hline
\end{tabular}
\begin{tabular}{llll}
A & B & C & D
\end{tabular}
(1) \( \begin{array}{lllll}\mathrm{P} & \mathrm{Q} & \mathrm{R} & \mathrm{S}\end{array} \)
(2) \( \begin{array}{lllll}\mathrm{Q} & \mathrm{P} & \mathrm{R} & \mathrm{S}\end{array} \)
(3) \( \begin{array}{lllll}\mathrm{R} & \mathrm{S} & \mathrm{Q} & \mathrm{P}\end{array} \)
(4) \( \begin{array}{lllll}\mathrm{R} & \mathrm{P} & \mathrm{Q} & \mathrm{S}\end{array} \)