Consider the following statements : \( S_{1} \) : Negation of \( (\...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=uK0vfYY6us4
Consider the following statements :
\( S_{1} \) : Negation of \( (\sim p \rightarrow q) \) is \( [\sim(p \vee q)] \wedge[p \vee(\sim p)] \).
\( \mathrm{P} \)
\( S_{2} \) : Negation of \( (p \leftrightarrow q) \) is \( (p \wedge \sim q) \vee(\sim p \wedge q) \).
W
\( S_{3} \) : Negation of \( (p \vee q) \) is \( \sim p \wedge \sim q \).
\( S_{4}: p \leftrightarrow q \) is equivalent to \( (\sim p \vee q) \wedge(p \vee \sim q) \).
State, in order, whether \( \mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4} \) are true or false
(1) TTTT
(2)TFTF
(3)FFTT
(4)FTFT
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw