Consider the function \( f:(-\infty, \infty) \rightarrow(-\infty, \...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=eUsVeHv3LCY
Consider the function \( f:(-\infty, \infty) \rightarrow(-\infty, \infty) \) defined by
\( \mathrm{P} \) \( f(x)=\frac{x^{2}-a x+1}{x^{2}+a x+1} ; 0a2 \).
\( (2008,12 \mathrm{M}) \)
W
Let \( g(x)=\int_{0}^{e^{x}} \frac{f^{\prime}(t)}{1+t^{2}} d t \). Which of the following is true?
(a) \( g^{\prime}(x) \) is positive on \( (-\infty, 0) \) and negative on \( (0, \infty) \)
(b) \( g^{\prime}(x) \) is negative on \( (-\infty, 0) \) and positive on \( (0, \infty) \)
(c) \( g^{\prime}(x) \) changes sign on both \( (-\infty, 0) \) and \( (0, \infty) \)
(d) \( g^{\prime}(x) \) does not change \( \operatorname{sign}(-\infty, \infty) \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw