Consider the lines given by
\[
\begin{array}{l}
L_{1}=x+3 y-5=0 \\
L_{2}=3 x-k y-1=0 \\
L_{3}=5 x+2 y-12=0
\end{array}
\]
Match the statements/expression in Column-I with the statements/expression in Column-II and indicate your answer by darkening the appropriate bubbles in the \( 4 \times 4 \) matrix given in OMR.
\begin{tabular}{|c|l|c|c|}
\hline \multicolumn{1}{|c|}{ Column I } & & Column II \\
\hline A & \( L_{1}, L_{2}, L_{3} \) are concurrent, if & \( \mathrm{p} \) & \( k=-9 \) \\
\hline B & \( \begin{array}{l}\text { One of } L_{1}, L_{2}, L_{3} \text { is parallel to at } \\
\text { least one of the other two, if }\end{array} \) & \( \mathrm{q} \) & \( k=-\frac{6}{5} \) \\
\hline C & \( L_{1}, L_{2}, L_{3} \) form a triangle, if & \( \mathrm{r} \) & \( k=\frac{5}{6} \) \\
\hline D & \( L_{1}, L_{2}, L_{3} \) do not form a triangle, if & \( \mathrm{s} \) & \( k=5 \) \\
\hline
\end{tabular}
(a) A-(s); B-(r,q); C-(q); D-(r,q,s)
(b) \( \mathrm{A}-(\mathrm{s}) ; \mathrm{B}-(\mathrm{p}, \mathrm{q}) ; \mathrm{C}-(\mathrm{r}) ; \mathrm{D}-(\mathrm{p}, \mathrm{q}, \mathrm{s}) \)
(c) A-(p); B-(p,r); C-(s); D-(p,r,s)
(d) \( \mathrm{A}-(\mathrm{q}) ; \mathrm{B}-(\mathrm{s}, \mathrm{q}) ; \mathrm{C}-(\mathrm{p}) \); D-(p,q,r)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live