Consider three infinite geometric progressions \( x=a-a r+a r^{2}-a r^{3}+\ldots \ldots \infty \...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=34TKnK1a2Fk
Consider three infinite geometric progressions \( x=a-a r+a r^{2}-a r^{3}+\ldots \ldots \infty \) \( y=a+a r^{2}+a r^{4}+\ldots \ldots \infty \) and \( \quad z=a+a r^{3}+a r^{6}+\ldots . . \infty \) where \( |r|1 \).
Then prove
\[
\frac{x}{y}=1-r
\]
ЁЯУ▓PW App Link - https://bit.ly/YTAI_PWAP
ЁЯМРPW Website - https://www.pw.live