Consider three infinite geometric progressions \( x=a-a r+a r^{2}-a r^{3}+\ldots . . \infty \) \...
Channel:
Subscribers:
451,000
Published on ● Video Link: https://www.youtube.com/watch?v=fR-0Gvvc6GA
Consider three infinite geometric progressions \( x=a-a r+a r^{2}-a r^{3}+\ldots . . \infty \) \( y=a+a r^{2}+a r^{4}+\ldots \ldots \infty \) and \( z=a+a r^{3}+a r^{6}+\ldots \ldots \infty \) where \( |r|1 \).
Then prove
\[
\frac{y}{z}=\frac{r^{2}+r+1}{r+1}
\]
ЁЯУ▓PW App Link - https://bit.ly/YTAI_PWAP
ЁЯМРPW Website - https://www.pw.live