Data Cleaning (Imputing Values) | Machine Learning Fundamentals
In this video, I teach you some of the basic ways you can clean a dataset to prepare it for machine learning. I show how to check for missing values, handle missing values, handle duplicate values, and remove columns. I show how to impute missing values using both Pandas dataframes and sklearn with numpy arrays. #machinelearning #ml #artificialintelligence
Code 1: https://colab.research.google.com/drive/1EqgsvbTtL7y4HDW6FuSc38KSrlAVMVCw?usp=sharing
Code 2: https://colab.research.google.com/drive/1pKNgcQtdW4fsTtZBO3VJPXizjXrAJFvn?usp=sharing
Dataset: https://www.kaggle.com/datasets/slmsshk/medical-students-dataset
Join the Community! - https://discord.gg/cortexdev
Want to Support the Channel?
- Become a Member: https://www.youtube.com/KodySimpson/join
- https://buymeacoffee.com/kodysimpson
My Socials:
Github: https://github.com/KodySimpson
Instagram: https://www.instagram.com/kody_a_simpson/
Twitter: https://twitter.com/kodysimp
Blog: https://simpson.hashnode.dev/
More Videos coming soon.
Leave a comment for any future video suggestions.