De Moivre's formula

Channel:
Subscribers:
9,580
Published on ● Video Link: https://www.youtube.com/watch?v=GAGzO-Weusw



Duration: 0:56
1 views
0


In mathematics, de Moivre's formula (also known as de Moivre's theorem and de Moivre's identity) states that for any real number x and integer n it holds that






(


cos

x
+
i
sin

x



)



n


=
cos

n
x
+
i
sin

n
x
,


{\displaystyle {\big (}\cos x+i\sin x{\big )}^{n}=\cos nx+i\sin nx,}
where i is the imaginary unit (i2 = −1). The formula is named after Abraham de Moivre, although he never stated it in his works. The expression cos x + i sin x is sometimes abbreviated to cis x.
The formula is important because it connects complex numbers and trigonometry. By expanding the left hand side and then comparing the real and imaginary parts under the assumption that x is real, it is possible to derive useful expressions for cos nx and sin nx in terms of cos x and sin x.
As written, the formula is not valid for non-integer powers n. However, there are generalizations of this formula valid for other exponents. These can be used to give explicit expressions for the nth roots of unity, that is, complex numbers z such that zn = 1.

Source: https://en.wikipedia.org/wiki/De_Moivre%27s_formula
Created with WikipediaReaderReborn (c) WikipediaReader







Tags:
AbrahamdeMoivre
AbramowitzandStegun
Binomialcoefficient
Chebyshevpolynomial
Cismathematics
Complexnumber
Complexnumbers
Complexplane