Each situation in column I gives graph of a particle moving in circular path. The variables \( \....
Each situation in column I gives graph of a particle moving in circular path. The variables \( \omega, \theta \) and \( t \) represent angular speed (at any time \( t \) ), angular displacement (in time \( t \) ) and time respectively Column II gives certain resulting interpretation. Match the graphs in column I with statements in column II.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{ Column I } & \multicolumn{2}{|r|}{ Column II } \\
\hline (A) & \( \underset{\omega-\theta \text { graph }}{\longrightarrow} \theta \) & (P) & \begin{tabular}{l}
Angular \\
acceleration of \\
particle is \\
uniform
\end{tabular} \\
\hline (B) & \( \underset{\omega^{2}-\theta \operatorname{graph}}{\omega_{\uparrow}^{\omega^{2}}} \) & (Q) & \begin{tabular}{l}
Angular \\
acceleration of \\
particle is non- \\
uniform
\end{tabular} \\
\hline (C) & \( \underset{\omega-\mathrm{t} \text { graph }}{ } \mathrm{t} \) & (R) & \begin{tabular}{l}
Angular \\
acceleration of \\
particle is directly \\
proportional to \( t \).
\end{tabular} \\
\hline (D) & \( \underset{\omega-t^{2} \text { graph }}{ } t^{2} \) & (S) & \begin{tabular}{l}
Angular \\
acceleration of \\
particle is directly \\
proportional to \( \theta \).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{lllll}
& A & B & C & D \\
(1) & \( \mathrm{Q}, \mathrm{S} \) & \( \mathrm{S} \) & \( \mathrm{R} \) & \( \mathrm{P} \) \\
(2) & \( \mathrm{S} \) & \( \mathrm{P}, \mathrm{Q} \) & \( \mathrm{R} \) & \( \mathrm{Q} \) \\
(3) & \( \mathrm{Q}, \mathrm{S} \) & \( \mathrm{P} \) & \( \mathrm{P} \) & \( \mathrm{Q}, \mathrm{R} \) \\
(4) & \( \mathrm{S} \) & \( \mathrm{P} \) & \( \mathrm{P} \) & \( \mathrm{Q} \)
\end{tabular}
\( \mathrm{P} \)
W
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live