A particle A moves along a circle of radius \( R=50 \mathrm{~cm} \) so that its radius vector \(....
Channel:
Subscribers:
451,000
Published on ● Video Link: https://www.youtube.com/watch?v=oQOdMwsoNbU
A particle A moves along a circle of radius \( R=50 \mathrm{~cm} \) so that its radius vector \( r \) relative to the fixed point \( \mathrm{O} \) (Figure) rotates with the constant angular velocity \( \omega=0.40 \mathrm{rad} / \mathrm{s} \). Then modulus \( \mathrm{v} \) of the velocity of the particle, and the modulus a of its total acceleration will be
(1) \( v=0.4 \mathrm{~m} / \mathrm{s}, a=0.4 \mathrm{~m} / \mathrm{s}^{2} \)
(2) \( v=0.32 \mathrm{~m} / \mathrm{s}, a=0.32 \mathrm{~m} / \mathrm{s}^{2} \)
(3) \( v=0.32 \mathrm{~m} / \mathrm{s}, a=0.4 \mathrm{~m} / \mathrm{s}^{2} \)
(4) \( v=0.4 \mathrm{~m} / \mathrm{s}, a=0.32 \mathrm{~m} / \mathrm{s}^{2} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live