2024-01-29 | Let \( A \) be the set of all students in a school. A relation \( R \) is defined on \( A \.... |
2024-01-29 | If \( P \) is the set of all parallelograms, and \( T \) is the set of all trapeziums, then.... |
2024-01-29 | On the set of human beings a relation \( R \) is defined as follows: \( a R b \) if \( a \).... |
2024-01-29 | Let \( R_{1} \) be a relation defined by \( R_{1}=\{(a, b)\} \mid a \geq b, a, b \) \( \in .... |
2024-01-29 | If \( A=\{1,2,3,4,5\}, B=\{2,4,6\}, C=\{3,4,6\} \), then
\( (A \cup B) \cap C \) is.... |
2024-01-29 | Let \( R \) be a reflexive relation on a set \( A \) and \( I \) be the identity relation o.... |
2024-01-29 | If \( R \) is a relation from a finite set \( A \) having \( m \) elements to a finite set \( B .... |
2024-01-29 | \( \left\{x \in R: \frac{2 x-1}{x^{3}+4 x^{2}+3 x} \in R\right\} \) equals.... |
2024-01-29 | If \( \mathrm{R} \) is a relation one finite set having \( n \) elements, then the number o.... |
2024-01-29 | If \( n(A \times B)=45 \), then \( n(A) \) cannot be.... |
2024-01-29 | Find \( x \) satisfying the equation:
\[\log ^{2}\left(1+\frac{4}{x}\right)+\log ^{2}\left(1-\fr.... |
2024-01-29 | Solve : \( \sqrt{x+2} \geq x \).... |
2024-01-29 | Let \( A=\{x: x \) is a multiple of 3\( \} \) and \( B=\{x: x \) is a multiple of 5\( \} \). The.... |
2024-01-29 | If \( p=\log _{a} b c, q=\log _{b} c a, r=\log _{c} a b \), then prove that \( p q r=p+q+r+2 \)..... |
2024-01-29 | Let \( A=\{1,2,3,4,5,6\} \) and \( B=\{2,4,6,8\} \). Find \( A-B \) and \( B-A \)..... |
2024-01-29 | Rewrite the following sets by the set builder method. \( R=\{1,3,5,7,9\} \).... |
2024-01-29 | If \( a+b+c=0, a^{2}+b^{2}+c^{2}=4 \) then \( a^{4}+b^{4}+c^{4} \) is equal to.... |
2024-01-29 | If \( x^{2}+5 y^{2}+z^{2}-4 x y+2 y z=0 \)
\( x, y, z \neq 0, x, y, z \in R \) then.... |
2024-01-29 | If \( \left(a^{2}+b^{2}+c^{2}\right)\left(x^{2}+y^{2}+z^{2}\right)=(a x+b y+c z)^{2} \), Show th.... |
2024-01-29 | The number of solutions of the equation \( x^{\log \sqrt{x}^{2 x}}=4 \) is.... |
2024-01-29 | Solve the equation for \( x \) : \( 5^{\log x}-3^{\log x-1}=3^{\log x+1}-5^{\log x-1} \), .... |