For all \( n \in N, \cos \alpha \cos 2 \alpha \cos 4 \alpha \ldots ...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=r4T4VgVWNlc
For all \( n \in N, \cos \alpha \cos 2 \alpha \cos 4 \alpha \ldots \cos \left(2^{n-1} \alpha\right) \) is equal to \( (\alpha \neq n \pi) \)
(a) \( \frac{\sin \left(2^{n} \alpha\right)}{2 \sin \alpha} \)
(b) \( \frac{\sin \left(2^{n} \alpha\right)}{2^{n} \sin \alpha} \)
(c) \( \frac{\cos \left(2^{n} \alpha\right)}{2^{n} \cos \alpha} \)
(d) \( \frac{\cos \left(2^{n} \alpha\right)}{2^{n-1} \cos \alpha} \)
\( \mathrm{W} \)
ЁЯУ▓PW App Link - https://bit.ly/YTAI_PWAP
ЁЯМРPW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw