Four real constants \( a, b, A, B \) are given and \( f(\theta)=1-a \cos \theta-b \sin \theta-A ...
Channel:
Subscribers:
453,000
Published on ● Video Link: https://www.youtube.com/watch?v=2ayDgbzOSn0
Four real constants \( a, b, A, B \) are given and \( f(\theta)=1-a \cos \theta-b \sin \theta-A \cos 2 \theta-B \sin 2 \theta \). Prove that if \( f(\theta) \geq 0, \forall \theta \in R \), then \( a^{2}+b^{2} \leq 2 \) and \( A^{2}+B^{2} \leq 1 \).
ЁЯУ▓PW App Link - https://bit.ly/YTAI_PWAP
ЁЯМРPW Website - https://www.pw.live