Given \( f(x)=\int_{0}^{x} e^{t}\left(\log _{e} \sec t-\sec ^{2} t\...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=6L9FT4Zvej4
Given \( f(x)=\int_{0}^{x} e^{t}\left(\log _{e} \sec t-\sec ^{2} t\right) d t, g(x)=-2 e^{x} \tan x \)
\( \mathrm{P} \) then the area bounded by the curves \( y=f(x) \) and \( y=g(x) \)
W between the ordinates \( x=0 \) and \( x=\frac{\pi}{3} \), is (in sq. units)
(1) \( \frac{1}{2} e^{\frac{\pi}{3}} \log _{e} 2 \)
(2) \( e^{\frac{\pi}{3}} \log _{e} 2 \)
(3) \( \frac{1}{4} e^{\frac{\pi}{3}} \log _{e} 2 \)
(4) \( e^{\frac{\pi}{3}} \log _{e} 3 \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw