If \( 1, \omega \) and \( \omega^{2} \) are the cube roots of unity...
Channel:
Subscribers:
456,000
Published on ● Video Link: https://www.youtube.com/watch?v=RccYoXCJI0E
If \( 1, \omega \) and \( \omega^{2} \) are the cube roots of unity and
\( \mathrm{P} \)
\[
\left[\begin{array}{cc}
1+\omega & 2 \omega \\
-2 \omega & -b
\end{array}\right]+\left[\begin{array}{cc}
\mathrm{a} & -\omega \\
3 \omega & 2
\end{array}\right]=\left[\begin{array}{cc}
0 & \omega \\
\omega & 1
\end{array}\right]
\]
W
then \( a^{2}+b^{2} \) is equal to:
(A) \( 1+\omega^{2} \)
(B) \( \omega^{2}-1 \)
(C) \( 1+\omega \)
(D) \( (1+\omega)^{2} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw