If \( (1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+C_{3} x^{3}+C_{n} x^{n} \...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=026Dyhtgr3g
If \( (1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+C_{3} x^{3}+C_{n} x^{n} \), prove
\( \mathrm{P} \)
that
W
\[
C_{0}-\frac{C_{1}}{2}+\frac{C_{2}}{3}-\ldots \ldots+(-1)^{n} \frac{C_{n}}{n+1}=\frac{1}{n+1}
\]
Activate Windows
Go to Settings to activate W ind ows
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw