If \( (1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+C_{3} x^{3}+C_{n} x^{n} \...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=QhjUDn2tPg8
If \( (1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+C_{3} x^{3}+C_{n} x^{n} \), prove
\( \mathrm{P} \)
that
W
\[
\begin{array}{l}
2 C_{0}+2^{2} \frac{C_{1}}{2}+2^{3} \frac{C_{2}}{3}+2^{4} \frac{C_{3}}{4} \\
+\ldots \ldots 2^{n+1} \frac{C_{n}}{n+1}=\frac{3^{n+1}-1}{n+1}
\end{array}
\]
Activate Windows
Go to Settings to activate W ind ows
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw