If \( a= \) absorptance, \( r= \) reflectance and \( t= \) transmittance then match the nature o....
If \( a= \) absorptance, \( r= \) reflectance and \( t= \)
\( \mathrm{P} \)
transmittance then match the nature of different
W
bodies.
\begin{tabular}{|l|l|c|l|}
\hline \multicolumn{2}{|c|}{ Column-I } & \multicolumn{2}{c|}{ Column-II } \\
\hline (A) & \begin{tabular}{l}
If \( a=t=0 \) and \\
\( r=1 \)
\end{tabular} & (p) & \begin{tabular}{l}
Body is perfect \\
absorber
\end{tabular} \\
\hline (B) & \begin{tabular}{l}
If \( r=t=0 \) and \\
\( a=1 \)
\end{tabular} & (q) & \begin{tabular}{l}
Body is perfect \\
reflector
\end{tabular} \\
\hline (C) & \begin{tabular}{l}
If \( a=r=0 \) and \\
\( t=1 \)
\end{tabular} & (r) & \begin{tabular}{l}
Body is perfect \\
transmitter
\end{tabular} \\
\hline
\end{tabular}
(1) (A)-(q); (B)-(p); (C)-(r)
(2) (A)-(p); (B)-(q); (C)-(r)
(3) (A)-(r); (B)-(p); (C)-(q)
(4) None of these
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live