If \( a+b+c=0 \), show that \( a^{3}+b^{3}+c^{3}=3 a b c \) The following are the steps involved...
Channel:
Subscribers:
451,000
Published on ● Video Link: https://www.youtube.com/watch?v=ItBt98Z5md0
If \( a+b+c=0 \), show that \( a^{3}+b^{3}+c^{3}=3 a b c \) The following are the steps involved in showing the above result. Arrange them in sequential order.
(A) \( a^{3}+b^{3}+3 a b(-c)=-c^{3} \)
(B) \( (a+b)^{3}=(-c)^{3} \)
(C) \( a+b+c=\mathrm{O} \Longrightarrow a+b=-c \)
(I) \( a^{3}+b^{3}+3 a b(a+b)=-c^{3} \)
(E) \( a^{3}+b^{3}+c^{3}=3 a b c \)
(a) ABIDCE
(b) BCIDAE
(c) CBIDAE
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw