If \( A \) is non-singular matrix of order \( n \times n \), \begin{tabular}{l|l|l|l} \hline \mu...
If \( A \) is non-singular matrix of order \( n \times n \),
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Column I } & \multicolumn{2}{c}{ Column II } \\
\hline (A) & \( \operatorname{adj}\left(A^{-1}\right) \) is & (p) & \( A(\operatorname{det} A)^{n-2} \) \\
(B) & \( \operatorname{det}\left(\operatorname{adj}\left(A^{-1}\right)\right) \) is & (q) & \( (\operatorname{det} A)^{n-1}(\operatorname{adj} A) \) \\
\hline (C) & \( \operatorname{adj}(\operatorname{adj} A) \) is & (r) & \( \frac{\operatorname{adj}(\operatorname{adj} A)}{(\operatorname{det} A)^{n-1}} \) \\
\hline (D) & \( \operatorname{adj}(A \operatorname{det}(A)) \) is & (s) & \( (\operatorname{det} A)^{1-n} \) \\
\hline & & (t) & \( \frac{A}{(\operatorname{det} A)} \) \\
\hline
\end{tabular}
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live