If \( a^{2}+b^{2}+c^{2}=1 \), then prove that \( \left|\begin{array...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=de3PS2EnuDM
If \( a^{2}+b^{2}+c^{2}=1 \), then prove that \( \left|\begin{array}{ccc}a^{2}+\left(b^{2}+c^{2}\right) \cos \phi & a b(1-\cos \phi) & a c(1-\cos \phi) \\ b a(1-\cos \phi) & b^{2}+\left(c^{2}+a^{2}\right) \cos \phi & b c(1-\cos \phi) \\ c a(1-\cos \phi) & c b(1-\cos \phi) & c^{2}+\left(a^{2}+b^{2}\right) \cos \phi\end{array}\right| \)
\( \mathrm{P} \)
W is independent of \( a, b, c \)
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw