If \( \alpha, \beta \) are the ends of a focal chord of an ellipse ...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=9bugaH98jWE
If \( \alpha, \beta \) are the ends of a focal chord of an ellipse of eccentricity e, then \( \tan \frac{\alpha}{2} \cdot \tan \frac{\beta}{2} \) is
\( \mathrm{P} \) equal to
(A) \( \frac{1-\mathrm{e}}{1+\mathrm{e}} \)
(B) \( \frac{1+\mathrm{e}}{1-\mathrm{e}} \)
(C) \( \frac{e-1}{e+1} \)
(D) \( \frac{e+1}{e-1} \)
๐ฒPW App Link - https://bit.ly/YTAI_PWAP
๐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw