If \( f(x)=\lim _{n \rightarrow \infty} \sum_{r=0}^{n} \frac{\tan \frac{x}{2^{r+1}}+\tan ^{3} \f....
If \( f(x)=\lim _{n \rightarrow \infty} \sum_{r=0}^{n} \frac{\tan \frac{x}{2^{r+1}}+\tan ^{3} \frac{x}{2^{r+1}}}{1-\tan ^{2} \frac{x}{2^{r+1}}} \) then \( \lim _{x \rightarrow 0} \frac{f(x)}{x} \)
\( \mathrm{P} \)
is equal to
(1) 1
(2) 0
(3) -1
(4) None of these
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
2024-01-23 | \( \lim _{x \rightarrow \infty}\left\{\frac{1^{2}}{1-x^{3}}+\frac{3}{1+x^{2}}+\frac{5^{2}}{1-x^{.... |
2024-01-23 | If \( y=\sqrt{\frac{2(\tan \alpha+\cot \alpha)}{1+\tan ^{2} \alpha}+\frac{1}{\sin ^{2} \alpha}} .... |
2024-01-23 | If \( y=\sqrt{x+\sqrt{y+\sqrt{x+\sqrt{y+\ldots \infty}}}} \), then \( \frac{d y}{d x} \) is equa.... |
2024-01-23 | Let \( g(x)=\log f(x) \), where \( f(x) \) is twice differentiable
positive function on \( (0, \.... |
2024-01-23 | If \( f(x)=x^{n} \), then the value of
\[
f(1)-\frac{f^{\prime}(1)}{1 !}+\frac{f^{\prime \prime}.... |
2024-01-23 | Let \( f(x) \) be a differentiable function such that
\( f^{\prime}(x)=\sin x+\sin 4 x \cos x \).... |
2024-01-23 | If \( f(x)=|x|^{|\sin x|} \), then \( f^{\prime}\left(-\frac{\pi}{4}\right) \) equals.... |
2024-01-23 | For each \( t \in R \), let \( [t] \) denote the greatest integer less
than or equal to \( t \)..... |
2024-01-23 | Let \( a=\min \left\{x^{2}+2 x+3: x \in R\right\} \) and
\( b=\lim _{\theta \rightarrow 0} \frac.... |
2024-01-23 | If the normal to the curve \( y=f(x) \) at \( x=0 \) be given
by the equation \( 3 x-y+3=0 \), t.... |
2024-01-23 | If \( f(x)=\lim _{n \rightarrow \infty} \sum_{r=0}^{n} \frac{\tan \frac{x}{2^{r+1}}+\tan ^{3} \f.... |
2024-01-23 | Match the points in List-I with their octants in List-II
\begin{tabular}{|l|l|l|l|}
\hline & Lis.... |
2024-01-23 | The largest value of the non-negative integer \( a \) for
which \( \lim _{\alpha \rightarrow 1}\.... |
2024-01-23 | The value of \( \lim _{x \rightarrow a}\left[\left\{\left(\frac{\sqrt{a}+\sqrt{x}}{a^{1 / 4}-x^{.... |
2024-01-23 | The value of
\( \lim _{x \rightarrow 0}\left\{\frac{1}{1 \sin ^{2} x}+2^{\frac{1}{\sin ^{2} x}}+.... |
2024-01-23 | If [.] denotes the greatest integer function, then
\( \lim _{x \rightarrow 0} \frac{\tan \left(\.... |
2024-01-23 | \( \lim _{x \rightarrow \infty}\left\{\left(\frac{x}{x+1}\right)^{a} a+\sin \frac{1}{x}\right\}^.... |
2024-01-23 | Let \( f: R \rightarrow R \) be such that \( f(1)=3 \) and \( f^{\prime}(1)=6 \).
Then, \( \lim .... |
2024-01-23 | Distance of point \( P \) from origin is 7 units from \( x \)-axis
is \( \sqrt{13} \) units and .... |
2024-01-23 | If \( \alpha \) and \( \beta \) are the roots of the equation
\( a x^{2}+b x+c=0 \), then \( \li.... |
2024-01-23 | \( \lim _{x \rightarrow \infty} \frac{\log x}{[x]} \), where [.] denotes the greatest integer
fu.... |