If \( g(x)=\frac{f(x)}{(x-a)(x-b)(x-c)} \), where \( f(x) \) is a polynomial of degree \( 3 \), ...
If \( g(x)=\frac{f(x)}{(x-a)(x-b)(x-c)} \), where \( f(x) \) is a polynomial of degree \( 3 \), then
(a) \( \int g(x) d x=\left|\begin{array}{lll}1 & a & f(a) \log \mid x-a \\ 1 & b & f(b) \log \mid x-b \\ 1 & c & f(c) \log \mid x-c\end{array}\right| \div\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|+k \)
(b) \( \frac{d g(x)}{d x}=\left|\begin{array}{lll}1 & a & f(a)(x-a)^{-2} \\ 1 & b & f(b)(x-b)^{-2} \\ 1 & c & f(c)(x-c)^{-2}\end{array}\right| \div\left|\begin{array}{lll}a^{2} & a & 1 \\ b^{2} & b & 1 \\ c^{2} & c & 1\end{array}\right| \)
(c) \( \frac{d g(x)}{d x}=\left|\begin{array}{lll}1 & a & f(a)(x-a)^{-2} \\ 1 & b & f(b)(x-b)^{-2} \\ 1 & c & f(c)(x-c)^{-2}\end{array}\right| \div\left|\begin{array}{ccc}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right| \)
(d) \( \int g(x) d x=\left|\begin{array}{lll}1 & a & f(a) \log \mid x-a \\ 1 & b & f(b) \log \mid x-b\end{array}\right| \div\left|\begin{array}{lll}a^{2} & a & 1 \\ b^{2} & b & 1 \\ 1 & c & f(c) \log \mid x-c\end{array}\right|+k \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
2023-06-08 | Let the system of linear equations
\[
\begin{array}{l}
x+y+\alpha z=2 \\
3 x+y+z=4 \\
x+2 z=1
\e... |
2023-06-08 | If the system of linear equations \( 2 x-3 y=y+5, \alpha x+5 y \) \( =\beta+1 \), where \( \alph... |
2023-06-08 | Let for some real numbers \( \alpha \) and \( \beta, a=\alpha-i \beta \). If the system of equat... |
2023-06-08 | If \( a, b, c \) are three distinct real numbers for which there exist \( x, y, z \) such that
\... |
2023-06-08 | Number of values of \( \theta \) lying in \( [0,100 \pi] \) for which the system of equations, \... |
2023-06-08 | Let \( \Delta=\left|\begin{array}{ccc}2 a_{1} b_{1} & a_{1} b_{2}+a_{2} b_{1} & a_{1} b_{3}+a_{3... |
2023-06-08 | If \( \Delta=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a... |
2023-06-08 | Let \( A_{n} \) be a \( n \times n \) matrix with its \( i^{\text {th }} \) row and \( j^{\text ... |
2023-06-08 | If \( n \in N \) and \( \Delta_{n}=\left|\begin{array}{ccc}n ! & (n+1) ! & (n+2) ! \\ (n+1) ! & ... |
2023-06-08 | Let \( a, b, c \) be positive real numbers. The following system of equations in \( x, y \) and ... |
2023-06-08 | If \( g(x)=\frac{f(x)}{(x-a)(x-b)(x-c)} \), where \( f(x) \) is a polynomial of degree \( 3 \), ... |
2023-06-08 | If \( \Delta=\left|\begin{array}{lll}\left(2 n_{1}+1\right)^{2} & \left(2 n_{2}+1\right)^{2} & \... |
2023-06-08 | Let \( \Delta=\left|\begin{array}{ccc}-b c & b^{2}+b c & c^{2}+b c \\ a^{2}+a c & -a c & c^{2}+a... |
2023-06-08 | If \( a, b, c \in \mathrm{R} \) and \( a+b+c \neq 0 \) and the system of equations
\[
\begin{arr... |
2023-06-08 | If \( D=\left|\begin{array}{ccc}\frac{1}{z} & \frac{1}{z} & -\frac{(x+y)}{z^{2}} \\ -\frac{(y+z)... |
2023-06-08 | Let \( x, y, z \) be positive integers satisfying \( \left|\begin{array}{lll}x & y & z \\ y & z ... |
2023-06-08 | Let \( \left\{\Delta_{1}, \Delta_{2}, \Delta_{3}, \ldots, \Delta_{k}\right\} \) be the set of th... |
2023-06-08 | Let \( \alpha, \beta \), be the roots of the equation \( a x^{2}+b x+c=0 \).
Let \( S_{n}=\alpha... |
2023-06-08 | Let \( \alpha, \beta \), be the roots of the equation \( a x^{2}+b x+c=0 \).
Let \( S_{n}=\alpha... |
2023-06-08 | Consider a system of linear equations \( 3 x+y-z=0, x-\frac{p y}{4} \) \( +z=2 \) and \( 2 x-y+2... |
2023-06-08 | If \( f(x)=\left|\begin{array}{ccc}x^{2}-4 x+6 & 2 x^{2}+4 x+10 & 3 x^{2}-2 x+16 \\ x-2 & 2 x+2 ... |