If \( \int x^{5} \cdot e^{-x^{2}} d x=g(x) \cdot e^{-x^{2}}+c \), w...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=mHG7WSCi4Gs
If \( \int x^{5} \cdot e^{-x^{2}} d x=g(x) \cdot e^{-x^{2}}+c \), where \( \mathrm{c} \) is a
\( \mathrm{P}^{15} \) constant of integration, then \( g(-1) \) is equal to:
W
(1) 1
(2) -1
(3) \( -\frac{5}{2} \)
(4) \( -\frac{1}{2} \)
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw