If it is given that \( \frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\ldots \) to \( \infty=\f...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=QkfM2-OFNyg
If it is given that \( \frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\ldots \) to \( \infty=\frac{\pi^{4}}{90} \), then the value of \( \frac{1}{1^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\ldots \) to \( \infty \) is equal to
(A) \( \frac{\pi^{4}}{96} \)
(B) \( \frac{\pi^{4}}{45} \)
(C) \( \frac{89 \pi^{4}}{90} \)
(D) none of these
ЁЯУ▓PW App Link - https://bit.ly/YTAI_PWAP
ЁЯМРPW Website - https://www.pw.live