If \( \left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \cdot...
If \( \left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] \cdots \ldots \ldots \ldots . \cdot\left[\begin{array}{cc}1 & n-1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 78 \\ 0 & 1\end{array}\right] \), then the inverse of \( \left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right] \) is :
\( \mathrm{P} \)
(1) \( \left[\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right] \)
(2) \( \left[\begin{array}{cc}1 & 0 \\ 13 & 1\end{array}\right] \)
(3) \( \left[\begin{array}{cc}1 & -12 \\ 0 & 1\end{array}\right] \)
(4) \( \left[\begin{array}{cc}1 & -13 \\ 0 & 1\end{array}\right] \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live