If \( \mathrm{f}: \mathrm{R} \rightarrow \mathrm{R} \) is an invertible function such that \( f(....
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=1VikI7mAaVk
If \( \mathrm{f}: \mathrm{R} \rightarrow \mathrm{R} \) is an invertible function such that
\( \mathrm{P} \)
\( f(x) \) and \( f^{-1}(x) \) are symmetric about the line
W
\( y=-x \), then
(A) \( \mathrm{f}(\mathrm{x}) \) is odd.
(B) \( \mathrm{f}(\mathrm{x}) \) and \( \mathrm{f}^{-1}(\mathrm{x}) \) may not be symmetric about the line \( \mathrm{y}=\mathrm{x} \).
(C) \( \mathrm{f}(\mathrm{x}) \) may not be odd.
(D) None of these.
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live