If \( \mathrm{f}(\mathrm{x}) \) is continuous in \( [a, b] \) differentiable in \( (a, b) \) and...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=vu50bxdaUwM
If \( \mathrm{f}(\mathrm{x}) \) is continuous in \( [a, b] \) differentiable in \( (a, b) \) and \( c \in \) \( (a, b) \) then \( \frac{f(b)-f(a)}{b^{3}-a^{3}} \) equals
(a) \( 3 c^{2} \cdot f^{\prime}(c) \)
(b) \( \frac{f^{\prime}(c)}{3 c^{2}} \)
(c) \( f(c) \cdot f^{\prime}(c) \)
(d) \( 3 c^{2} f(c) \cdot f^{\prime}(c) \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live