If \( \mathrm{Vr} \) is the velocity of rain falling vertically and...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=aWvS9SLt8ak
If \( \mathrm{Vr} \) is the velocity of rain falling vertically and \( \mathrm{Vm} \) is the velocity of a man walking on a level road, and \( \theta \) is the angle with vertical at which he should hold the umbrella to protect himself, than the relative velocity of rain w.r.t. the man is given by:
(a) \( \mathrm{Vrm}=\sqrt{\mathrm{Vr}^{2}+\mathrm{Vm}^{2}+2 \mathrm{VrVm} \cos \theta} \)
(b) \( \mathrm{Vrm}=\sqrt{\mathrm{Vr}^{2}+\mathrm{Vm}^{2}-2 \mathrm{VrVm} \cos \theta} \)
(c) \( \mathrm{Vrm}=\sqrt{\mathrm{Vr}^{2}+\mathrm{Vm}^{2}} \)
(d) \( \mathrm{Vrm}=\sqrt{\mathrm{Vr}^{2}-\mathrm{Vm}^{2}} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw