If the ellipse \( x^{2}+k^{2} y^{2}=k^{2} a^{2} \) is confocal with the hyperbola \( x^{2}-y^{2}=a^{2} \), then match the following lists:
\begin{tabular}{|c|l|c|c|}
\hline \multicolumn{2}{|c|}{ List-I } & \multicolumn{2}{|c|}{ List-II } \\
\hline A. & \begin{tabular}{l}
Square of the ratio of \\
eccentricities of hyperbola and \\
ellipse is
\end{tabular} & P. & 2 \\
\hline B. & \begin{tabular}{l}
Ratio of major axis of ellipse and \\
transverse axis of hyperbola is
\end{tabular} & Q. & 3 \\
\hline C. & \begin{tabular}{l}
If ellipse and hyperbola cut each \\
other at angle \( \theta \), then the value \\
of 2cosec \( \theta \) is
\end{tabular} & R. & \( \frac{1}{\sqrt{3}} \) \\
\hline D. & \begin{tabular}{l}
Ratio of length of latus rectum of \\
ellipse and hyperbola is
\end{tabular} & S. & \( \sqrt{3} \) \\
\hline
\end{tabular}
\( \mathrm{P} \)
W
\begin{tabular}{lllll}
& A & B & C & D \\
(1) & \( \mathrm{Q} \) & \( \mathrm{R} \) & \( \mathrm{S} \) & \( \mathrm{P} \) \\
(2) & \( \mathrm{R} \) & \( \mathrm{P} \) & \( \mathrm{S} \) & \( \mathrm{Q} \) \\
(3) & \( \mathrm{Q} \) & \( \mathrm{S} \) & \( \mathrm{P} \) & \( \mathrm{R} \) \\
(4) & \( \mathrm{S} \) & \( \mathrm{R} \) & \( \mathrm{Q} \) & \( \mathrm{P} \)
\end{tabular}