If the ellipse \( x^{2}+k^{2} y^{2}=k^{2} a^{2} \) is confocal with the hyperbola \( x^{2}-y^{2}....

Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=3aTZyLXI3Mg



Duration: 7:18
3 views
0


If the ellipse \( x^{2}+k^{2} y^{2}=k^{2} a^{2} \) is confocal with the hyperbola \( x^{2}-y^{2}=a^{2} \), then match the following lists:
\begin{tabular}{|c|l|c|c|}
\hline \multicolumn{2}{|c|}{ List-I } & \multicolumn{2}{|c|}{ List-II } \\
\hline A. & \begin{tabular}{l}
Square of the ratio of \\
eccentricities of hyperbola and \\
ellipse is
\end{tabular} & P. & 2 \\
\hline B. & \begin{tabular}{l}
Ratio of major axis of ellipse and \\
transverse axis of hyperbola is
\end{tabular} & Q. & 3 \\
\hline C. & \begin{tabular}{l}
If ellipse and hyperbola cut each \\
other at angle \( \theta \), then the value \\
of 2cosec \( \theta \) is
\end{tabular} & R. & \( \frac{1}{\sqrt{3}} \) \\
\hline D. & \begin{tabular}{l}
Ratio of length of latus rectum of \\
ellipse and hyperbola is
\end{tabular} & S. & \( \sqrt{3} \) \\
\hline
\end{tabular}
\( \mathrm{P} \)
W
\begin{tabular}{lllll}
& A & B & C & D \\
(1) & \( \mathrm{Q} \) & \( \mathrm{R} \) & \( \mathrm{S} \) & \( \mathrm{P} \) \\
(2) & \( \mathrm{R} \) & \( \mathrm{P} \) & \( \mathrm{S} \) & \( \mathrm{Q} \) \\
(3) & \( \mathrm{Q} \) & \( \mathrm{S} \) & \( \mathrm{P} \) & \( \mathrm{R} \) \\
(4) & \( \mathrm{S} \) & \( \mathrm{R} \) & \( \mathrm{Q} \) & \( \mathrm{P} \)
\end{tabular}


πŸ“²PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live




Other Videos By PW Solutions


2024-01-23Reflection of the line \( \bar{a} z+a \bar{z}=0 \) in the real axis is....
2024-01-23If the vertices of a triangle are \( 8+5 i,-3+i,-2-3 i \), the modulus and the argument of the c....
2024-01-23The point of intersection of the curves \( \arg (z-3 i)= \) \( 3 \pi / 4 \) and \( \arg (2 z+1-2....
2024-01-23If the following regions in the complex plane, the only one that does not represent a circle is....
2024-01-23If \( z \) lies on the circle \( |z-1|=1 \), then \( \frac{z-2}{z} \) equals....
2024-01-23If the point \( z, i z \) and 1 are collinear, then \( z \) lies on....
2024-01-23For complex numbers \( z_{1}, z_{2} \) and \( z \) satisfying \( \frac{z_{1}-z_{3}}{z_{2}-z_{3}}....
2024-01-23If \( \left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=1 \) and \( z_{1}+z_{2}+z_{3}=0 \....
2024-01-23If \( z_{1}, z_{2}, z_{3} \) are the vertices of an equilateral triangle \( P \) \( \mathrm{ABC}....
2024-01-23Match the following lists: \begin{tabular}{|l|l|c|c|} \hline \multicolumn{1}{|c|}{ List-I } & \m....
2024-01-23If the ellipse \( x^{2}+k^{2} y^{2}=k^{2} a^{2} \) is confocal with the hyperbola \( x^{2}-y^{2}....
2024-01-23Total number of common tangents of \( y^{2}=4 a x \) and \( x y=c^{2} \) is /are....
2024-01-23Match the following lists: \begin{tabular}{|c|c|c|c|} \hline \multicolumn{2}{|r|}{ List-I } & \m....
2024-01-23If the angle between the asymptotes of hyperbola \( \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \)....
2024-01-23The number of pairs of perpendicular tangents of the hyperbola \( 3 x^{2}-6 x-2 y^{2}+4 y-23=0 \....
2024-01-23If the product of the length of perpendiculars drawn from any point on the hyperbola \( x^{2}-2 ....
2024-01-23If \( e \) is the eccentricity of the hyperbola \( (5 x-10)^{2}+ \) \( (5 y+15)^{2}=(12 x-5 y+1)....
2024-01-23Let the foci of the hyperbola \( \frac{x^{2}}{A^{2}}-\frac{y^{2}}{B^{2}}=1 \) be the vertices of....
2024-01-23Passage-II The circle \( x^{2}+y^{2}-8 x=0 \) and hyperbola \( \frac{x^{2}}{9}-\frac{y^{2}}{4}=1....
2024-01-23Passage-II The circle \( x^{2}+y^{2}-8 x=0 \) and hyperbola \( \frac{x^{2}}{9}-\frac{y^{2}}{4}=1....
2024-01-23Passage-I A point moves such that the sum of the slopes of the normal drawn from it to the hyper....