If the solution curve of the differential equation \( \frac{d y}{d x}=\frac{x+y-2}{x-y} \) passe...
Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=wn4-PAO0HgI
If the solution curve of the differential equation \( \frac{d y}{d x}=\frac{x+y-2}{x-y} \) passes through the points \( (2,1) \) and \( (\mathrm{k}+1.2) \cdot k0 \), then
(a) \( 2 \tan ^{-1}\left(\frac{1}{k}\right)=\log _{e}\left(k^{2}+1\right) \)
(b) \( \tan ^{-1}\left(\frac{1}{k}\right)=\log _{e}\left(k^{2}+1\right) \)
(c) \( 2 \tan ^{-1}\left(\frac{1}{k+1}\right)=\log _{e}\left(k^{2}+2 k+2\right) \)
(d) \( 2 \tan ^{-1}\left(\frac{1}{k}\right)=\log _{e}\left(\frac{k^{2}+1}{k^{2}}\right) \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live