If \( x+4|y|=6 y \), then \( y \) as a function of \( x \) is
(1) c... VIDEO
If \( x+4|y|=6 y \), then \( y \) as a function of \( x \) is
(1) continuous at \( x=0 \)
(2) derivable at \( x=0 \)
\( \mathrm{P} \)
(3) \( \frac{d y}{d x}=\frac{1}{2} \) for all \( x \)
(4) none of these
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live
Other Videos By PW Solutions 2023-03-21 Which of the statement(s) is/are incorrect?
(1) If \( f+g \) is con... 2023-03-21 \( f(x)=\left\{\begin{array}{ll}1-\sqrt{1-x^{2}}, & \text { if }-1 ... 2023-03-21 Let \( f(x) \) be a continuous function for all \( x \in R \) and \... 2023-03-21 If \( f(x-y), f(x) f(y) \), and \( f(x+y) \) are in A.P. for all \(... 2023-03-21 If \( f(x)=[|x|] \), where \( [\cdot] \) denotes the greatest integ... 2023-03-21 Let \( f(x)=\operatorname{sgn}(\cos 2 x-2 \sin x+3) \), where sgn \... 2023-03-21 Let \( g(x) \) be a polynomial of degree one and \( f(x) \) be defi... 2023-03-21 If \( f(x)=[|x|] \), where \( [\cdot] \) denotes the greatest integ... 2023-03-21 If \( y=\frac{x^{2}}{2}+\frac{1}{2} x \sqrt{x^{2}+1}+\log _{e} \sqr... 2023-03-21 Anonzero polynomial with real coefficients has the property
P that ... 2023-03-21 If \( x+4|y|=6 y \), then \( y \) as a function of \( x \) is
(1) c... 2023-03-21 If \( y=\cos ^{-1}\left(\frac{2 x}{1+x^{2}}\right) \), then \( \fra... 2023-03-21 A curve is represented parametrically by the equations
\( \mathrm{P... 2023-03-21 A curve is represented parametrically by the equations
P \( x=f(t)=... 2023-03-21 If \( f(\theta)=\tan \left(\sin ^{-1} \sqrt{\frac{2}{3+\cos 2 \thet... 2023-03-21 \( f(x)=\left|x^{2}-3\right| x|+2| \). Then which of the following ... 2023-03-21 If \( x^{3}-2 x^{2} y^{2}+5 x+y-5=0 \) and \( y(1)=1 \), then
(1) \... 2023-03-21 Let \( f(x)=\frac{\sin ^{-1}(1-\{x\}) \times \cos ^{-1}(1-\{x\})}{\... 2023-03-21 Let \( f(x)=\frac{\sqrt{x-2 \sqrt{x-1}}}{\sqrt{x-1}-1} x \). Then
P... 2023-03-21 If \( f(x) \) satisfies the relation
P
\[
f\left(\frac{5 x-3 y}{2}\... 2023-03-21 If \( y=e^{\sqrt{x}}+e^{-\sqrt{x}} \), then \( \frac{d y}{d x} \) i...