If \( y=m_{1} x+c_{1} \) and \( y=m_{2} x+c_{2}, m_{1} \neq m_{2} \) are two common tangents of ...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=26KPxLl3CmQ
If \( y=m_{1} x+c_{1} \) and \( y=m_{2} x+c_{2}, m_{1} \neq m_{2} \) are two common tangents of circle \( x^{2}+y^{2}=2 \) and parabola \( y^{2}=x \), then the value of \( 8\left|m_{1} m_{2}\right| \) is equal to
(a) \( 3+4 \sqrt{2} \)
(b) \( -5+6 \sqrt{2} \)
(c) \( -4+3 \sqrt{2} \)
(d) \( 7+6 \sqrt{2} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live