If \( z=-(1+i) \), then....
If \( z=-(1+i) \), then
\( \mathrm{P} \)
(1) \( \arg z=\frac{\pi}{4} \)
(2) \( \arg z=\frac{5 \pi}{4} \)
(3) \( \arg z=\frac{-3 \pi}{4} \)
(4) \( |z|=\sqrt{2} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
2024-01-22 | Let \( X, Y \) and \( Z \) be the three sets of complex numbers defined as follows:
\[
\begin{ar.... |
2024-01-22 | If every element of a third order determinant of
value of \( \Delta \) is multiplied by 4 , then.... |
2024-01-22 | If \( \left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & .... |
2024-01-22 | Match the column
\begin{tabular}{|l|l|c|c|}
\hline \multicolumn{2}{|c|}{ Column-I } & \multicolu.... |
2024-01-22 | The value of \( \left|\begin{array}{lll}6^{2} & 6^{3} & 6^{4} \\ 6^{3} & 6^{4} & 6^{5} \\ 6^{4} .... |
2024-01-22 | \( A B C D \) is a rhombus, its diagonal \( A C \) and \( B D \) intersect at the point \( M \) .... |
2024-01-22 | The number of points \( z \) in the complex plane satisfying both the equations \( |z-4-8 i|=\sq.... |
2024-01-22 | If the points \( 1+2 \mathrm{i} \) and \( -1+4 \mathrm{i} \) are real reflections of each other .... |
2024-01-22 | Let \( z_{1}=1+i, z_{2}=-1-i \) and \( z_{3} \) be complex numbers
such that \( z_{1}, z_{2} \) .... |
2024-01-22 | A solid sphere, hollow sphere, hollow cylinder and ring each of mass \( M \) and radius \( R \) .... |
2024-01-22 | If \( z=-(1+i) \), then.... |
2024-01-22 | If \( \omega \neq 1 \) is a cube root of unity, then \( 1, \omega, \omega^{2} \).... |
2024-01-22 | If \( \omega(\neq 1) \) is a cube root of unity, then
\( \left|\begin{array}{ccc}1 & 1+i+\omega^.... |
2024-01-22 | If \( \Delta=\left|\begin{array}{ccc}6 i & -3 i & 1 \\ 4 & 3 i & -1 \\ 20 & 3 & i\end{array}\rig.... |
2024-01-22 | If \( \omega \) is an imaginary cube root of unity, then the value
of \( \sin \left\{\left(\omeg.... |
2024-01-22 | If \( z=x+i y \) and \( 0 \leq \sin ^{-1}\left(\frac{z-4}{2 i}\right) \leq \frac{\pi}{2} \) then.... |
2024-01-22 | If \( \left|z_{1}\right|=\left|z_{2}\right|=1, z_{1} z_{2} \neq-1 \) and \( z=\frac{z_{1}+z_{2}}.... |
2024-01-22 | A positive integer \( n \leq 5 \) such that
\( \int_{0}^{1} e^{2 x-1}(x-1)^{n} d x=\frac{1}{4}\l.... |
2024-01-22 | If \( x, y, a, b \in R, a \neq 0 \) and \( (a+i b)(x+i y)=\left(a^{2}+b^{2}\right) \)
\( i \), t.... |
2024-01-22 | Let \( z \in C \) be such that \( \operatorname{Re}\left(z^{2}\right)=0 \), then.... |
2024-01-22 | One particle is projected from ground upwards with velocity \( 20 \mathrm{~ms}^{-1} \). At the s.... |