Let \( z_{1}=1+i, z_{2}=-1-i \) and \( z_{3} \) be complex numbers such that \( z_{1}, z_{2} \) ....

Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=Q1DLJbDS4oI



Duration: 5:20
0 views
0


Let \( z_{1}=1+i, z_{2}=-1-i \) and \( z_{3} \) be complex numbers
\( \mathrm{P} \)
such that \( z_{1}, z_{2} \) and \( z_{3} \) form an equilateral triangle. Then \( z_{3} \) is equal to
W
(1) \( \sqrt{3}(1+i) \)
(2) \( \sqrt{3}(1-i) \)
(3) \( \sqrt{3}(i-1) \)
(4) \( \sqrt{3}(-1-i) \)


📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live




Other Videos By PW Solutions


2024-01-22Let \( P=\left[a_{i j}\right] \) be a \( 3 \times 3 \) matrix and let \( Q=\left[b_{i j}\right] ....
2024-01-22If \( \Delta=\left|\begin{array}{ccc}0 & b-a & c-a \\ a-b & 0 & c-b \\ a-c & b-c & 0\end{array}\....
2024-01-22Let \( X, Y \) and \( Z \) be the three sets of complex numbers defined as follows: \[ \begin{ar....
2024-01-22If every element of a third order determinant of value of \( \Delta \) is multiplied by 4 , then....
2024-01-22If \( \left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & ....
2024-01-22Match the column \begin{tabular}{|l|l|c|c|} \hline \multicolumn{2}{|c|}{ Column-I } & \multicolu....
2024-01-22The value of \( \left|\begin{array}{lll}6^{2} & 6^{3} & 6^{4} \\ 6^{3} & 6^{4} & 6^{5} \\ 6^{4} ....
2024-01-22\( A B C D \) is a rhombus, its diagonal \( A C \) and \( B D \) intersect at the point \( M \) ....
2024-01-22The number of points \( z \) in the complex plane satisfying both the equations \( |z-4-8 i|=\sq....
2024-01-22If the points \( 1+2 \mathrm{i} \) and \( -1+4 \mathrm{i} \) are real reflections of each other ....
2024-01-22Let \( z_{1}=1+i, z_{2}=-1-i \) and \( z_{3} \) be complex numbers such that \( z_{1}, z_{2} \) ....
2024-01-22A solid sphere, hollow sphere, hollow cylinder and ring each of mass \( M \) and radius \( R \) ....
2024-01-22If \( z=-(1+i) \), then....
2024-01-22If \( \omega \neq 1 \) is a cube root of unity, then \( 1, \omega, \omega^{2} \)....
2024-01-22If \( \omega(\neq 1) \) is a cube root of unity, then \( \left|\begin{array}{ccc}1 & 1+i+\omega^....
2024-01-22If \( \Delta=\left|\begin{array}{ccc}6 i & -3 i & 1 \\ 4 & 3 i & -1 \\ 20 & 3 & i\end{array}\rig....
2024-01-22If \( \omega \) is an imaginary cube root of unity, then the value of \( \sin \left\{\left(\omeg....
2024-01-22If \( z=x+i y \) and \( 0 \leq \sin ^{-1}\left(\frac{z-4}{2 i}\right) \leq \frac{\pi}{2} \) then....
2024-01-22If \( \left|z_{1}\right|=\left|z_{2}\right|=1, z_{1} z_{2} \neq-1 \) and \( z=\frac{z_{1}+z_{2}}....
2024-01-22A positive integer \( n \leq 5 \) such that \( \int_{0}^{1} e^{2 x-1}(x-1)^{n} d x=\frac{1}{4}\l....
2024-01-22If \( x, y, a, b \in R, a \neq 0 \) and \( (a+i b)(x+i y)=\left(a^{2}+b^{2}\right) \) \( i \), t....