One particle is projected from ground upwards with velocity \( 20 \mathrm{~ms}^{-1} \). At the same time another identical particle is dropped from a height of \( 180 \mathrm{~m} \) but not along the same vertical line. Assume that collision of first particle with ground is perfectly inelastic. Match the following two columns for centre of mass of the two particles \( \left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right) \)
\begin{tabular}{|l|l|c|l|}
\hline & \multicolumn{1}{|c|}{ Column I } & & \multicolumn{1}{|c|}{ Column II } \\
\hline (A) & Initial acceleration & (p) & 5 SI units \\
\hline (B) & Initial velocity & (q) & 10 SI units \\
\hline (C) & Acceleration at \( t=5 \mathrm{~s} \) & (r) & 20 SI units \\
\hline (D) & Velocity at \( t=5 \mathrm{~s} \) & (s) & 25 SI units \\
\hline
\end{tabular}
(1) \( \mathrm{A} \rightarrow \mathrm{q} ; \mathrm{B} \rightarrow \mathrm{q} ; \mathrm{C} \rightarrow \mathrm{p} ; \mathrm{D} \rightarrow \mathrm{s} \)
(2) \( \mathrm{A} \rightarrow \mathrm{r} ; \mathrm{B} \rightarrow \mathrm{q}, \mathrm{s} ; \mathrm{C} \rightarrow \mathrm{s}, \mathrm{q} ; \mathrm{D} \rightarrow \mathrm{p} \)
(3) \( \mathrm{A} \rightarrow \mathrm{p} ; \mathrm{B} \rightarrow \mathrm{q} ; \mathrm{C} \rightarrow \mathrm{r} ; \mathrm{D} \rightarrow \mathrm{s} \)
(4) \( \mathrm{A} \rightarrow \mathrm{q} ; \mathrm{B} \rightarrow \mathrm{r} ; \mathrm{C} \rightarrow \mathrm{p} ; \mathrm{D} \rightarrow \mathrm{s} \)