Improved Feature Importance Computation for Tree Models Based on the Banzhaf Value

Subscribers:
348,000
Published on ● Video Link: https://www.youtube.com/watch?v=QRPg_CDBwWI



Duration: 53:11
579 views
12


A Google TechTalk, presented by Piotr Sankowski, 2023-03-30
ABSTRACT: The Shapley value -- a fundamental game-theoretic solution concept -- has recently become one of the main tools used to explain predictions of tree ensemble models. Another well-known game-theoretic solution concept is the Banzhaf value. Although the Banzhaf value is closely related to the Shapley value, its properties w.r.t. feature attribution have not been understood equally well. This paper shows that, for tree ensemble models, the Banzhaf value offers some crucial advantages over the Shapley value while providing similar feature attributions.

In particular, we first give an optimal O(TL+n) time algorithm for computing the Banzhaf value-based attribution of a tree ensemble model's output. Here, T is the number of trees, L is the maximum number of leaves in a tree, and n is the number of features. In comparison, the state-of-the-art Shapley value-based algorithm runs in O(TLD^2+n) time, where D denotes the maximum depth of a tree in the ensemble.

Next, we experimentally compare the Banzhaf and Shapley values for tree ensemble models. Both methods deliver essentially the same average importance scores for the studied datasets using two different tree ensemble models (the sklearn implementation of Decision Trees or xgboost implementation of Gradient Boosting Decision Trees). However, our results indicate that, on top of being computable faster, the Banzhaf is more numerically robust than the Shapley value.

Joint work with A. Karczmarz, A. Mukherjee, P. Wygocki and T. Michalak.

About the Speaker: Piotr Sankowski is a professor at the Institute of Informatics, University of Warsaw, where he received his habilitation in 2009 and where he received a doctorate in computer science in 2005. His research interest focuses on practical application of algorithms, ranging from economic applications, through learning data structures, to parallel algorithms for data science. In 2009, Piotr Sankowski received also a doctorate in physics in the field of solid state theory at the Polish Academy of Sciences. In 2010 he received ERC Starting Independent Researcher Grant, in 2015 ERC Proof of Concept Grant, and in 2017 ERC Consolidator Grant. He is a president of IDEAS NCBR – a research and development centre operating in the field of artificial intelligence and digital economy. Piotr Sankowski is also a co-founder of the spin-off company MIM Solutions.

A Google Talk Series on Algorithms, Theory, and Optimization




Other Videos By Google TechTalks


2023-05-30Differentially Private Diffusion Models Generate Useful Synthetic Images
2023-05-30Improving the Privacy Utility Tradeoff in Differentially Private Machine Learning with Public Data
2023-05-30Randomized Approach for Tight Privacy Accounting
2023-05-30Almost Tight Error Bounds on Differentially Private Continual Counting
2023-05-30EIFFeL: Ensuring Integrity for Federated Learning
2023-05-30Differentially Private Diffusion Models
2023-05-15Damian Grimling | Sentistocks | Sentimenti | web3 talks | March 9th 2023 | MC: Blake DeBenon
2023-04-21Branimir Rakic | CTO & Co-Founder of OriginTrail | web3 talks | Feb 27th 2023 | MC: Alex Ticamera
2023-04-15A Nearly Tight Analysis of Greedy k-means++
2023-04-15Introduction to Length-Constrained Expanders and Expander Decompositions
2023-04-07Improved Feature Importance Computation for Tree Models Based on the Banzhaf Value
2023-04-07A Unifying Theory of Distance to Calibration
2023-04-07Dynamic Graph Sketching: To Infinity And Beyond
2023-03-20Sergey Nazarov | Co-Founder Chainlink | web3 talks | Mar 16 2023 | MC: Marlon Ruiz
2023-03-09Evan Shapiro | CEO Mina Foundation | web3 talks | Feb 16th 2023 | MC: Marlon Ruiz
2023-03-07Zürich Go Meetup: Zero-effort Type-safe Parsing of JSON and XML
2023-03-07Zürich Go Meetup: Let’s Build a Game with Go
2023-03-07Zürich Go Meetup: Run Go programs on your Raspberry Pi with gokrazy!
2023-03-03Online Covering: Secretaries, Prophets and Universal Maps
2023-03-03Auto-bidding in Online Advertising: Campaign Management and Fairness
2023-03-03Tree Learning: Optimal Algorithms and Sample Complexity