In a closed rigid vessel, \( \mathrm{N}_{2} \) and \( \mathrm{H}_{2} \) gases are taken in \( 9: 13 \) mole ratio, by which the following equilibria are established :
\( \mathrm{P} \)
\[
\begin{array}{l}
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) ; \mathrm{K}_{\mathrm{P}_{1}}=? \\
\mathrm{~N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g}) ; \mathrm{K}_{\mathrm{P}_{2}}=\text { ? } \\
\end{array}
\]
W
- At equilibrium, the total pressure is \( 14 \mathrm{~atm} \), the partial pressure of ammonia is \( 2 \mathrm{~atm} \) and the partial pressure of hydrogen is \( 4 \mathrm{~atm} \)
The value of \( \frac{1}{\mathrm{~K}_{\mathrm{P}_{2}}} \) is :
(A) \( \frac{3}{80} \mathrm{~atm}^{-2} \)
(B) \( \frac{80}{3} \mathrm{~atm}^{2} \)
(C) \( \frac{40}{3} \mathrm{~atm}^{2} \)
(D) \( \frac{5}{3} \mathrm{~atm}^{-2} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live