In a \( \triangle \mathrm{PQR}, \mathrm{L} \) and \( \mathrm{M} \) are two points on base \( \ma...
Channel:
Subscribers:
480,000
Published on ● Video Link: https://www.youtube.com/watch?v=wUz-NpqZMqM
In a \( \triangle \mathrm{PQR}, \mathrm{L} \) and \( \mathrm{M} \) are two points on base \( \mathrm{QR} \), such that \( \angle \mathrm{LPQ}=\angle \mathrm{QRP} \) and \( \angle \mathrm{RPM}=\angle \mathrm{RQP} \).
Then, which of the following is/are true:
1. \( \triangle \mathrm{PQL} \sim \triangle \mathrm{RPM} \)
2. \( \mathrm{QL} \times \mathrm{RM}=\mathrm{PL} \times \mathrm{PM} \)
3. \( \mathrm{PQ}^{2}=\mathrm{QR} \cdot \mathrm{QL} \)
a. Both (1) and (2)
b. Both (2) and (3)
c. Both (1) and (3)
d. All the three
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live