In each situation of column I a physical quantity related to orbiting electron in a hydrogen lik...
In each situation of column I a physical quantity related to orbiting electron in a hydrogen like atom is given. The terms \( Z \) and \( n \) given in column-II have usual meaning in Bohrs theory. Match the quantities in column-I with the terms which depend on quantity given in column-II.
\begin{tabular}{|c|l|l|l|}
\hline \multicolumn{2}{|c|}{ Column-I } & \multicolumn{2}{c|}{ Column-II } \\
\hline A. & \( \begin{array}{l}\text { Frequency of orbiting } \\
\text { electron }\end{array} \) & p. & \( \begin{array}{l}\text { is directly proportional } \\
\text { to } Z^{2}\end{array} \) \\
\hline B. & \( \begin{array}{l}\text { Angular momentum of } \\
\text { orbiting electron }\end{array} \) & q. & \( \begin{array}{l}\text { is directly proportional } \\
\text { to } n .\end{array} \) \\
\hline C. & \( \begin{array}{l}\text { Magnetic moment of } \\
\text { orbiting electron }\end{array} \) & r. & \( \begin{array}{l}\text { is inversely proportional } \\
\text { to } n^{3}\end{array} \) \\
\hline D. & \( \begin{array}{l}\text { The average current due } \\
\text { to orbiting of electron }\end{array} \) & s. & is independent of \( Z \) \\
\hline
\end{tabular}
(a) A-(s); B-(q,s); C-(q,r); D-(q,r)
(b) A-(p,r); B-(q,s); C-(q,s); D-(p,r)
(c) A-(p,r); B-(q); C-(q,s); D-(r,q)
(d) A-(p,q); B-(q,r); C-(q,p); D-(p,r)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live