In the column I, a system is described in each option and corresponding time period is given in ....
In the column I, a system is described in each option and corresponding time period is given in the column II. Suitably match them.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Column I } & \multicolumn{2}{|c|}{ Column II } \\
\hline (A) & \begin{tabular}{l}
A simple pendulum of length \\
( \( l \) oscillating with small \\
amplitude in a lift moving \\
down with retardation g/2.
\end{tabular} & (P) & \( T=2 \pi \sqrt{\frac{2 l}{3 g}} \) \\
\hline (B) & \begin{tabular}{l}
A block attached to an end of \\
a vertical spring, whose other \\
end is fixed to the ceiling of a \\
lift, stretches the spring by \\
length ' \( l \) ' in equilibrium. Its \\
time period when lift moves \\
up with an acceleration g/2 is
\end{tabular} & \( T=2 \pi \sqrt{\frac{l}{g}} \) \\
\hline (C) & \begin{tabular}{l}
The time period of small \\
oscillation of a uniform rod of \\
length 'l' smoothly hinged at \\
one end. The rod oscillates in \\
vertical plane.
\end{tabular} & (R) & \( T=2 \pi \sqrt{\frac{2 l}{g}} \) \\
\hline (D) & \begin{tabular}{l}
A cubical block of edge ' \( l \) ' \\
and specific density \( \rho / 2 \) is in \\
equilibrium with some \\
volume inside water filled in \\
a large fixed container. \\
Neglect viscous forces and \\
surface tension. The time \\
period of small oscillations of \\
the block in vertical direction \\
is
\end{tabular} & \( T=2 \pi \sqrt{\frac{l}{2 g}} \) \\
\hline
\end{tabular}
W
(1) \( (\mathrm{A}-\mathrm{R}) \quad(\mathrm{B}-\mathrm{P}) \quad(\mathrm{C}-\mathrm{S}) \quad(\mathrm{D}-\mathrm{S}) \)
(2) \( (\mathrm{A}-\mathrm{P}) \quad(\mathrm{B}-\mathrm{R}) \quad(\mathrm{C}-\mathrm{S}) \quad(\mathrm{D}-\mathrm{S}) \)
(3) \( \left(\begin{array}{llll}\mathrm{A}-\mathrm{P}) & (\mathrm{B}-\mathrm{Q}) & (\mathrm{C}-\mathrm{P}) & (\mathrm{D}-\mathrm{S})\end{array}\right. \)
(4) \( (\mathrm{A}-\mathrm{P}) \quad(\mathrm{B}-\mathrm{S}) \quad(\mathrm{C}-\mathrm{S}) \quad(\mathrm{D}-\mathrm{R}) \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live